
www.spacegoo.com

Cubemap based collision detection
Xavier Bourry1*

Abstract
We provide an algorithm for character-scenery physics. Instead of using CPU geometry collision dectection or GPU special
computing units, we use an algorithm running mainly on GPU, based on cubemapping. It do not require any advanced
functionnality of the GPU and can be implemented on mobile devices with OpenGL ES or with WebGL. This algorithm
provides a significant performance increase at loading and at running of the application over CPU based algorithm.

Keywords
cubemapping — collision — detection — cubemap — GPU — shaders — octree — WebGL — OpenGL — character —
scenery

1SPACEGOO - http://www.spacegoo.com

Contents

Introduction 1

1 Principle 1

1.1 Collision detection . 1
The cubemap • The projection • The vertex shader • The frag-
ment shader

1.2 Path correction . 2
Computing collision vectors • Get max values • Displacement of
the sphere

2 Implementation 3

2.1 The drawing loop . 3

2.2 WebGL . 3

References 3

Introduction
Physics is an important aspect of 3D applications, to avoid
collision between the character and the scenery. It is also
often computing intensive.

The usual algorithm requires to compute an octree for
the sscenery meshes. Then collisions between the character
and the scenery are computed using sphere-octree collision
detection algorithm. [1] [2] [3] The octree can be either pre-
computed and included into meshes data, or computed at the
loading of the application. In both cases, using an octree
increase either data volume, either loading duration. On mod-
ern gaming graphic hardwares, there are units specialized in
physical computing, like PhysX for Nvidia Geforce. But they
are unavailable on low-end graphic devices.

Our algorithm computes physics by rendering a world axis
aligned depth cubemap. It can work with low-end graphic
devices, and computation are done mainly on GPU.

1. Principle

z

x

y

Right view

Back view

P

θ

φ

Figure 1. Only back and right projection planes are shown

1.1 Collision detection
The first step is to detect collisions between the character
sphere and the scenery. The character sphere is approxima-
tively the bounding box of the character mesh. Our algorithm
can work as well for first person view as for third person view.

1.1.1 The cubemap
In the rendering loop, before rendering the scene, we render a
depth cubemap. We use the usual Cartesian coordinate system
of the 3D programming with the vertical Y-axis.

(Ox,Oy,Oz) axis are parallels to world axis. They do not
depends on camera/character rotation.

Cubemap based collision detection — 2/3

1.1.2 The projection
For each side of the cubemap (front, back, bottom, top, left,
right), we render a spherical depth field. The render can be
small (about 32x32 pixels).The smaller it is, the fastest it will
be. But if it is too small, the accuracy of the physical engine
will decrease.

The projection matrices [3] for each side are :

A =−(zmax + zmin)/(zmax− zmin) (1)
B = (−2∗ zmax ∗ zmin)/(zmax− zmin) (2)

Pf ront =


1 0 0 0
0 1 0 0
0 0 A B
0 0 −1 0

 (3)

Pback =


−1 0 0 0
0 1 0 0
0 0 −A B
0 0 1 0

 (4)

Pbottom =


1 0 0 0
0 0 −1 0
0 A 0 B
0 −1 0 0

 (5)

Ptop =


1 0 0 0
0 0 1 0
0 −A 0 B
0 1 0 0

 (6)

Ple f t =


0 0 −1 0
0 1 0 0
A 0 0 B
−1 0 0 0

 (7)

Pright =


0 0 1 0
0 1 0 0
−A 0 0 B
1 0 0 0

 (8)

where zmin and zmax are the camera nearest and furthest planes
(only points with zmin < z < zmax are displayed.

1.1.3 The vertex shader
In the vertex shader, we compute clipping coordinates glPosition
by doing :

glPosition = Pside.Mob jet .vec4(position− center,1)

where Mob jet is the movement matrix of an object of the
scenery, position is the position of the vertex, and center
is the center of the bounding sphere.

1.1.4 The fragment shader
In the fragment shader, we give a color for each pixel depend-
ing on the distance between the point and the center of the
bounding sphere. Because each color component (R,G,B)
is usually encoded on 8 bits, we clip this distance between
Rmin and Rmax. Rmax is the radius of the bounding sphere, and
Rmin < Rmax is the maximum penetration distance of a scenery
object into the bounding sphere.

d = |vec3(Mob jet .vec4(position− center,1))| (9)

red = 1.− d−Rmin

Rmax−Rmin
(10)

glFragColor = vec4(red,0.,0.,1.); (11)

O RmaxRmin

RL M

N

Figure 2. O is the center of the bounding sphere, R,L ,
represents the cubemap projection boundaries of one side.
The rendering area is gray filled.

We can compute zmin = ON and zmax = OM from Rmin
and Rmax by

zmin =
Rmin√

2
(12)

zmax =
√

2.Rmax (13)

1.2 Path correction
The cubemap provides the information about the distance
between the bounding sphere and near objects with which
it could be interaction. We must process this information
in order to prevent the bouding sphere from colliding with
objects.

Cubemap based collision detection — 3/3

1.2.1 Computing collision vectors
Firstly, we need to be able to compute θ and φ for each pixel
of the cubemap. We compute arrays with θ and φ for each
side of the cubemap once and for all at the loading of the
application. Then we compute its cartesian coordinates x,y,z
for each collision vector (point of the cubemap where the red
component r is strictly positive).

x = r.sin(θ)∗ sin(φ) (14)
y = r.cos(φ) (15)

z = r.cos(θ)∗ sin(φ) (16)

1.2.2 Get max values
We search for the pixel with the highest red value r for each
side of the cubemap. We only keep the cartesian coordinate
matching with this side. For example, for the front view of
the cubemap (along Z axis), we keep the z coordinate. We
define :

xmax = xrmax,right (17)
xmin = xrmax,le f t (18)
ymax = yrmax,top (19)

ymin = yrmax,bottom (20)
zmax = zrmax,back (21)
zmin = zrmax, f ront (22)

xmax,ymax,zmax are always positive while xmin,ymin,zmin
are negative.

For optimisation, we only need to compute the nice com-
ponent of the cartesian coordinates for rmax points, so there
are only 6 components to compute (one per cubemap side).

We will use collision with front and back cubemap view
to displace the bounding sphere along Z axis, right and left
cubemap view to displace it along X axis, and top and bottom
view to move it along Y axis.

1.2.3 Displacement of the sphere
We define the collision response cy along Y axis (vertical axis)
differently to the collision response cxz < cy along X and Z
axis (horizontal axis). It is due to the gravity. We compute :

dx = cxz ∗ (xmax + xmin) (23)
dy =−cy ∗ (ymin + ymax) (24)

dz = cxz ∗ (zmax + zmin) (25)

Then we move the camera/the main character of [dx,dy,dz]
vector. To allow the small crossing obstacles seamlessly (ob-
stacles smaller than hmax), we add a threshold effect on dx
and dz :

if |dx|< hmax then dx = 0
if |dz|< hmax then dz = 0

2. Implementation

2.1 The drawing loop
This is the pseudo-code of the rendering loop (executed for
each frame). dt is the time period (time between 2 runs of the
rendering function).

G=9.8 //gravity
vy=0 //vertical speed

fonction animate() {
// displace the bounding sphere with the gravity
vy = vy + G.dt
dyg = vy.dt;

// displacement is the elementary displacement
// due to user controls (keyboard, mouse)
move(bounding_sphere, [0, dyg, 0]+displacement)

render the cubemap
//compute the response of collisions
compute [dx, dy, dz]

if (dy<0) {
vy=0; //the user is on the ground

}

// move the user
move(user, [dx, dy, dz]+[0, dyg, 0]+displacement)

// render the scene...
}

2.2 WebGL
We have implemented this algorithm with WebGL [4]. This
algorithm is particularly suitable with WebGL because :

• WebGL gives only access to 2 kinds of shaders : the
vertex shader and the fragment shader. We cannot use
the geometry shader to compute physics,

• Of course we cannot access to specific hardware physic
computation modules, like PhysX for Nvidia graphic
devices,

• CPU computations are quite slow with WebGL, because
they are done with Javascript.

References
[1] Jeffrey Mahovsky and Brian Wyvill. Fast Ray-Axis

aligned bounding box overlap tests with plücker coor-
dinates. Journal of Graphics, GPU, and Game Tools,
9(1):35+, 2004.

[2] Costas Tzafestas and Philippe Coiffet. Real-time col-
lision detection using spherical octrees: Virtual reality
application. In IEEE Int. Work. on Robot and Human
Communication, pages 11–14, 1996.

[3] Xavier Bourry. WebGL : Guide de développement
d’applications web 3D. Editions ENI, 2013.

[4] Khronos Group. Official webgl specifications, 2011.

